
![]() | 北京盈盛恒泰科技有限责任公司 |

13810615661
市场部 (市场部经理)
- 电话:
- 010-83993593
- 手机:
- 13810615661
- 传真:
- 010-83993562
- 联系我时,
- 告知来自化工仪器网
- 个性化:
- www.ensoultech.com
- 手机站:
- m.ensoultech.com
基于电子鼻多传感器融合的茶叶存储时间识别-德国AIRSENSE电子鼻
阅读:1515发布时间:2020-5-7
笔者尝试以中国名茶之一的安徽黄山毛峰茶为研究对象,用电子鼻对已存储 60、120、180、240、300、360 d 的干茶进行检测,获取茶叶香气的特征信息;分别采用主成分回归(PCR)、偏小二乘回归(PLS)、BP 神经网络(BPNN)方法,建立茶叶存储时间的预测模型,并对 3 种预测模型性能进行对比分析,以寻求茶叶存储时间的z佳识别方法。
检测样品:茶叶样本为从安徽黄山当地茶厂订购的黄山毛峰明前茶
主要仪器:德国Airsense的PEN3便携式电子鼻
检测指标:茶叶香气的特征信息
实验结果:借助电子鼻检测存储 60、120、180、240、300、360 d 的黄山毛峰茶香气信息,根据电子鼻各传感器响应曲线变化特点,选取出 1 组能够表征不同香气信息的基本特征变量,分别采用主成分回归(PCR)、偏小二乘回归(PLS)和 BP 神经网络(BPNN)方法,建立茶叶存储时间的预测模型。测试样本集对 3 种预测模型的检验结果表明:PCR、PLS、BPNN 模型的预测标准误差分别为 10.05、6.04、3.21 d;大预测相对误差分别为 11.03%、7.02%、5.89%;平均预测相对误差分别为 6.73%、4.74%、3.62%;预测值与实际值之间的决定系数 R 2 分别为 0.862、0.896、0.987。3 种模型都能较好地对茶叶存储时间进行预测,相比较而言,BPNN 模型性能*,PLS 模型性能优于 PCR 模型。
结论:茶叶香气与茶叶品质密切关联,是评定茶叶品质的重要依据。本研究为茶叶存储时间识别建立了一种方法。
本文献来源于“蚌埠学院电子与电气工程学院”。
以上信息由企业自行提供,信息内容的真实性、准确性和合法性由相关企业负责,化工仪器网对此不承担任何保证责任。 温馨提示:为规避购买风险,建议您在购买产品前务必确认供应商资质及产品质量。