产品展厅 收藏该商铺

您好 登录 注册

当前位置:
美国布鲁克海文仪器公司>资料下载>测量应用案例-20220703

资料下载

测量应用案例-20220703

阅读:342          发布时间:2022-7-26
提 供 商 美国布鲁克海文仪器公司 资料大小 2.8MB
资料图片 下载次数 0次
资料类型 PDF 文件 浏览次数 342次
免费下载 点击下载
Vanadium pentoxide is the most important vanadium compound by being the precursor to most vanadium alloys. It also plays an essential role in the production of sulfuric acid as well as in metal-ion batteries and supercapacitors. In this paper, pulsed laser ablation in liquids is used to synthesize “naked” vanadium pentoxide nanostructures. The resulting particles take up “nearly-spherical” and “flower-like” morphologies, composed of a-V2O5 and b-V2O5 crystalline phases. Even “naked”, the nanostructures are stable in time with a zeta potential of 51 7 mV. In order to maximize the production of vanadium pentoxide nanostructure, the optimal repetition rate was determined to be @ 6600 Hz when irradiating a pure vanadium target in DI-water. This corresponds to a cavitation bubble lifetime of around 0.15 ms. At that repetition rate, the production reached 10 ppm per minute of irradiation. Finally, from the characterization of the a-V2O5 and b-V2O5 nanostructures, the surface energy of each phase has been carefully determined at 0.308 and 1.483 J cm2 , respectively. Consequently, the b-phase was found to display a surface energy very close to platinum. The exciton Bohr radius has been determined at 3.5 0.7 nm and 2.0 0.6 nm for a-V2O5 and b-V2O5 phases, respectively.

收藏该商铺

登录 后再收藏

提示

您的留言已提交成功!我们将在第一时间回复您~

对比框

产品对比 产品对比 联系电话 二维码 意见反馈 在线交流

扫一扫访问手机商铺
010-62081908
在线留言