产品展厅 收藏该商铺

您好 登录 注册

当前位置:
美国布鲁克海文仪器公司>技术文章>测量应用案例-20200509

技术文章

测量应用案例-20200509

阅读:225          发布时间:2020-5-26
文献名: Effects of core-shell polycarboxylate superplasticizer on the fluidity and hydration behavior of cement paste

作者  Shengli Chen a , b , Shenmei Sun a , Xiaolong Chen a , Kaihong Zhong a , Qiang Shao a , Haijun Xu a , Jiangxiong Wei b

a    Department of Building Materials, Guangzhou Institute of Building Science Co., Ltd., Guangzhou Municipal Construction Group Co., Ltd., Guangzhou, Guangdong 510440, People's Republic of China

b    School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, People’s Republic of China

摘要: Polycarboxylate superplasticizer nanomicelles (nano-PCEs) with a core-shell structure were prepared via aqueous emulsion copolymerization in one pot. The shells are constructed with hydrophilic segments of poly(acrylic acid)-co-poly(isobutenyl polyethenoxy ether) (PAA-co-PHPEG), offering the water-reducing performance and stability for nano-PCEs. The cores are self-assembled with hydrophobic segments of polystyrene-co-poly(hydroxyethyl acrylate) (PS-co-PHEA), endowing nano-PCEs with good loss resistant of fluidity for cement pastes. The chemical structure of nano-PCEs was verified by the nuclear magnetic resonance spectrum (1H NMR) and fourier transform infrared spectroscopy (FTIR), and the 16−48 nm diameter of nano-PCE nanomicelles was determined by dynamic laser scattering (DLS) and transmission electron microscopy (TEM). Compared with comb PCEs, the cement paste containing nano-PCEs exhibited better fluidity retention of three hours by mini-slump measurements, lower hydration heat and more delayed hydration heat evolution by isothermal calorimetry tests. Furthermore, the hydrolysis and adsorption behavior of nano-PCEs in alkaline cement pastes were deduced, and a working mechanism of nano-PCEs was theoretically explained. This new type of superplasticizer nanomicelles can be used as a long time rheology modifying agent in fresh cementitious systems.

收藏该商铺

登录 后再收藏

提示

您的留言已提交成功!我们将在第一时间回复您~

对比框

产品对比 产品对比 联系电话 二维码 意见反馈 在线交流

扫一扫访问手机商铺
010-62081908
在线留言